Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process
نویسندگان
چکیده
The clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system mediates adaptive immunity against foreign nucleic acids in prokaryotes. However, efficient adaptation of a native CRISPR to purified viruses has only been observed for the type II-A system from a Streptococcus thermophilus industry strain, and rarely reported for laboratory strains. Here, we provide a second native system showing efficient adaptation. Infected by a newly isolated virus HHPV-2, Haloarcula hispanica type I-B CRISPR system acquired spacers discriminatively from viral sequences. Unexpectedly, in addition to Cas1, Cas2 and Cas4, this process also requires Cas3 and at least partial Cascade proteins, which are involved in interference and/or CRISPR RNA maturation. Intriguingly, a preexisting spacer partially matching a viral sequence is also required, and spacer acquisition from upstream and downstream sequences of its target sequence (i.e. priming protospacer) shows different strand bias. These evidences strongly indicate that adaptation in this system strictly requires a priming process. This requirement, if validated also true for other CRISPR systems as implied by our bioinformatic analysis, may help to explain failures to observe efficient adaptation to purified viruses in many laboratory strains, and the discrimination mechanism at the adaptation level that has confused scientists for years.
منابع مشابه
Haloarcula hispanica CRISPR authenticates PAM of a target sequence to prime discriminative adaptation
The prokaryotic immune system CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated genes) adapts to foreign invaders by acquiring their short deoxyribonucleic acid (DNA) fragments as spacers, which guide subsequent interference to foreign nucleic acids based on sequence matching. The adaptation mechanism avoiding acquiring 'self' DNA fragments is poorly unders...
متن کاملDNA motifs determining the accuracy of repeat duplication during CRISPR adaptation in Haloarcula hispanica
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) acquire new spacers to generate adaptive immunity in prokaryotes. During spacer integration, the leader-preceded repeat is always accurately duplicated, leading to speculations of a repeat-length ruler. Here in Haloarcula hispanica, we demonstrate that the accurate duplication of its 30-bp repeat requires two conserved mid-repe...
متن کاملCRISPR-Cas: the effective immune systems in the prokaryotes
Approximately all sequenced archaeal and half of eubacterial genomes have some sort of adaptive immune system, which enables them to target and cleave invading foreign genetic elements by an RNAi-like pathway. CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins) systems consist of the CRISPR loci with multiple copies of a short repeat sequence separa...
متن کاملThe spacer size of I-B CRISPR is modulated by the terminal sequence of the protospacer
Prokaryotes memorize invader information by incorporating alien DNA as spacers into CRISPR arrays. Although the spacer size has been suggested to be predefined by the architecture of the acquisition complex, there is usually an unexpected heterogeneity. Here, we explored the causes of this heterogeneity in Haloarcula hispanica I-B CRISPR. High-throughput sequencing following adaptation assays d...
متن کاملForeign DNA acquisition by the I-F CRISPR–Cas system requires all components of the interference machinery
CRISPR immunity depends on acquisition of fragments of foreign DNA into CRISPR arrays. For type I-E CRISPR-Cas systems two modes of spacer acquisition, naïve and primed adaptation, were described. Naïve adaptation requires just two most conserved Cas1 and Cas2 proteins; it leads to spacer acquisition from both foreign and bacterial DNA and results in multiple spacers incapable of immune respons...
متن کامل